BVNRAS. Z75- 567N

rt

Mon. Not. R. Astron. Soc. 275, 567-590 (1995)

Automated morphological classification of APM galaxies by supervised

artificial neural networks

A.Naim,! O. Lahav,! L. Sodré, Jr? and M. C. Storrie-Lombardi!

nstitute of Astronomy, Madingley Road, Cambridge, CB3 O0HA

2 Instituto Astronémico e Geofisico da Universidade de Sdo Paulo, CP9638, 01065-970, Sdo Paulo, Brazil

Accepted 1995 January 31. Received 1995 January 27; in original form 1994 November 3

ABSTRACT

We train artificial neural networks to classify galaxies based solely on the morphology
of the galaxy images as they appear on blue survey plates. The images are reduced,
and morphological features such as bulge size and the number of arms are extracted,
all in a fully automated manner. The galaxy sample was first classified by six
independent experts. We use several definitions for the mean type of each galaxy,
based on those classifications. We then train and test the network on these features.
We find that the rms error of the network classifications, as compared with the mean
types of the expert classifications, is 1.8 Revised Hubble types. This is comparable to
the overall rms dispersion between the experts. This result is robust and almost
completely independent of the network architecture used.
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1 INTRODUCTION

Since the introduction of the Hubble classification scheme
(Hubble 1926, 1936), astronomers have been looking at
ways to classify galaxies. Other systems were suggested, e.g.
Mt. Wilson (Sandage 1961), Yerkes (Morgan 1958), Revised
Hubble (de Vaucouleurs 1959) and DDO (van den Bergh
1960a,b, 1976); each has its special characteristics, but they
all share Hubble’s original notion that the sequence of
morphologies attests to an underlying sequence of physical
processes.

This notion has been widely accepted for the past few
decades, making morphological classification of large
numbers of galaxies important for better modelling and
understanding of galaxy structure and evolution. Examples
include statistical relations which are specific to certain types
of galaxies, e.g. the D, ~o relation for ellipticals (Lynden-Bell
et al. 1988), the Tully-Fisher relation for spirals (Tully &
Fisher 1977) and the morphology-density relation (Hubble
1936; Dressler 1980).

Morphological classification of galaxies is usually done by
visual inspection of photographic plates. This is by no means
an easy task, requiring skill and experience. It is also time-
consuming: catalogues containing human classifications take
years to complete and contain of order 10* entries [e.g. the
Third Reference Catalogue of Bright Galaxies (de Vaucou-
leurs et al. 1991) and the ESO catalogue (Lauberts &
Valentijn 1989)]. However, in the APM (Automated Plate

Measuring machine) survey (e.g. Maddox et al. 1990) there
are roughly 2 X 106 galaxies, and the expected yield of the
Sloan Digital Sky Survey (Gunn et al,, in preparation) is over
107 CCD images of galaxies. Clearly, such numbers of
galaxies cannot be classified by humans. There is an obvious
need for automated methods that will put the knowledge and
experience of the human experts to use and produce very
large samples of automatically classified galaxies.

The first stage towards achieving this goal was creating a
uniform, well-defined sample to be classified by human
experts. This was done in previous papers (Lahav et al. 1994;
Naim et al. 1995, hereafter Paper I), where the same sample
of galaxies was presented to six independent expert
observers and a detailed analysis of their classifications was
carried out. The experts are R. Buta, H. Corwin, G. de
Vaucouleurs, A. Dressler, J. Huchra and S. van den Bergh
(hereafter RB, HC, GV, AD, JH and vdB, respectively). We
found that the rms dispersions between pairs of experts
ranged from 1.3 to 2.1 Revised Hubble types, and that the
overall rms dispersion was 1.8 types.

The next stage, which is carried out in this paper, entails
training a computer software to classify galaxies on the basis
of their apparent morphology. Our choice of an automated
classifier is artificial neural networks (ANNs), which proved
in a pilot study (Storrie-Lombardi et al. 1992) to be well
suited for this task. The original idea behind ANNs was
the creation of a simplified model of the human brain
(McCulloch & Pitts 1943; Hopfield & Tank 1986), but they
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were found to be well suited for a variety of applications in
astronomy, such as classifying objects in the IRAS point
source catalogue (e.g. Adorf & Meurs 1988), adaptive optics
(e.g. Angel et al. 1990), scheduling observation time (e.g.
Adorf 1989) and star-galaxy separation (e.g. Odewahn et al.
1991).

In this stage of our research we apply ‘Supervised Learn-
ing’, whereby we attempt to teach the ANN to mimic the
human classifications. The ANN is given a set of parameters
describing each galaxy and is told what the ‘correct’ type is. It
then tries to make its classification as similar to the desired
one as possible. (For more details on supervised learning, as
well as other aspects of neural networks in the context of
galaxy classification, see Lahav et al. 1995, in preparation.)

The outline of this paper is as follows. In Section 2 we
discuss the galaxy sample. The various ways of defining
mean galaxy types for training the ANN are explained in
Section 3. In Section 4 we describe the preparation of galaxy
images for feature extraction. The process. of extracting
morphological features for the ANN is described in detail in
Section 5. In Section 6 we give the results of training various
configurations of the ANN, based on different choices of
input parameters, mean types and ANN architectures. The
discussion follows in Section 7. In the Appendix we give a
detailed listing of the human and ANN classifications, as well
as of all the parameters the ANNSs used, for a portion of the
whole sample. The full table for the entire sample may be
obtained from the authors.

2 THE GALAXY SAMPLE

The galaxies were all taken from the APM Equatorial Cata-
logue of Galaxies (Raychaudhury et al, in preparation),
which is 98 per cent complete for galaxies of magnitude
B<17 mag and D= 0.5 arcmin, covering most of the sky in
the ranges of declination —17°5<0<2%5, and galactic
latitude b=20°. The plates were Ila-J (broad blue—green
band) plates taken with the 48-inch UK Schmidt telescope at
Siding Spring, Australia. All the images were scanned from
glass copies of the original plates with a resolution of 1 arcsec
by the APM machine. The plates themselves, however, have
a resolution of roughly 2 arcsec (due to observing condi-
tions), which is therefore the limiting resolution of the
digitized images. No plate matching was performed, and no
account was taken of possible brightness gradients within
plates. Calibration for the plates was not available at the time
the sample was compiled, but it later turned out that the rms
difference between the plates (~0.2 mag) was not large
enough to become crucial. At any rate, the images had
already been classified by the experts (without plate match-
ing) at that stage, and for the sake of consistency we used the
same images for the ANN.

A diameter-limited sample (D > 1.2 arcmin at an isophotal

level of 24.5 mag arcsec™2) from 75 plates was compiled.
The APM machine scans plates in strips 2.1-arcmin wide,

and at the time this compilation was made the strips were
analysed separately, so large images were sometimes broken
down (depending on their orientation with respect to the
scanning strip). For this reason the original list of APM-
selected galaxies with D> 1.2 arcmin was augmented by
galaxies from the PGC catalogue (Paturel et al. 1989) with
D> 0.9 arcmin. The resulting sample contained 835 galaxy
images, which were then sent for classifying by the human
experts (see Paper I for full details). 830 of these images were
subsequently used for training the ANN (five were rejected
due either to low picture quality or to being duplicates of
other images already in the sample).

3 MORPHOLOGICAL TYPES

The full description of the expert classifications appears in
Paper L For training the ANN, only 7-types (Table 1) in the
range — 5 to 10 were considered as classifications. During
the training phase the ANN may be presented with all the
different classifications each galaxy received by the experts
(see below for further details), or it may be given just one
mean classification. In any case, since the ANN operates as a
function from the inputs to the output, it can produce only
one result. Therefore, regardless of the way we present the
inputs to the ANN, it must be provided with one desired
output value per galaxy (the ‘correct’ answer). We considered
the following options for defining the desired outputs:

(i) a straight unweighted mean of the types given by all
experts;

(ii) a corrected mean type that takes little account of
outlying classifications;

(iii) a similarly corrected mean of a subset of experts, who
agree with each other better than with the others, and

(iv) the classifications of a single expert.

For option (i) the straight mean was calculated for each
galaxy as a single number, and the resulting list of numbers
was taken to be ‘type set 1’

Option (ii) requires some algorithm for disregarding
outlying classifications. We chose an iterative scheme of
weighted means. The straight mean is used as the value of
iteration zero, and for each galaxy the new mean type is
calculated as

Nexp Tf Nexp 1
<Ti+1>_j§l|Ti_<Ti>|+1/E:IITI'_<T',>'+1’ (1)

where (T;) is the mean type in iteration i and 77 is the type
given to the current galaxy by expert j. For each galaxy the
summations are only over those experts who actually gave it
a T-type. The effect of this weighting scheme is to give lower
weights to classifications that are further away from the
previous estimate of the mean type. Successive iterations
drive the mean closer and closer to the mean of the ‘good’
points. We carried out several such iterations, and Fig. 1

Table 1. T-types in the Revised Hubble System. For training the ANN only types in the range [—5, 10] were

considered.
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Figure 1. Iterative weighted mean type for all six experts. The plots show for each galaxy the current iteration mean type versus the original
straight mean type. The correlation between the straight mean type and the iterated mean type becomes worse as the outliers become less
important in successive iterations. Root mean square values and Pearson’s r are calculated between the current iteration mean type and the

straight mean.

shows the scatter plots of the iterated means versus the
straight mean. The change in the rms value becomes smaller
from one iteration to the next, and after four iterations it
becomes small enough for us to stop there. We took as ‘type
set 2’ the means arrived at after four successive iterations. As
will be explained below (Section 6.2.2), in some cases we
presented the ANN with all the available classifications for
each galaxy (i.e. the same galaxy would appear several times,
each time with a classification given by a different expert),
and asked it to arrive as close as possible to the corrected
mean types of type set 2.

For option (iii) we chose the classifications of RB, HC and
GV, for whom we had found (in Paper I) the tightest correla-
tions. Again we employed the approach of the iterative
weighted mean, and chose as ‘type set 3’ the means arrived at
after four successive iterations. Scatter plots for this case are
shown in Fig. 2.

Finally, for option (iv) we took RB’s classifications to
make ‘type set 4’, HC’s for ‘type set 5°, GV’s for ‘type set 6,
AD’s for ‘type set 7, JH’s for ‘type set 8’, and vdB’s for ‘type
set 9°. Table 2 summarizes the choice of type sets.

4 IMAGE REDUCTION

The original images were kept in Firs format files of either
256 X256 or 512 x 512 pixel. Pixel values represent density
measurements from the APM microdensitometer. Several
stages were required in order to standardize the images:

(i) subtracting the sky background,;
(i) removing superposed foreground stars, and
(iii) standardization of images in size.

These stages were carried out automatically by software
written for this purpose.

4.1 Sky subtraction

A heavily smoothed version of each image was prepared and
a histogram of pixel intensities was made for it. Normally the
sky background would stand out as the most prominent (and
lowest in pixel intensity) peak in the histogram. A Gaussian
would be fitted to that peak and a threshold value set to 2o
above the peak, in terms of the unsmoothed image. (Smooth-
ing sharpens the peak considerably so that the width of the
fitted Gaussian cannot be taken as the real ¢.) However, in
11 cases the galaxy was too faint and was mistaken by the
automatic program to be part of the sky. In these cases an
artificial sky level was fed in by hand. Whichever way the
threshold was determined, once set it was subtracted from
the whole image and each pixel resulting with a negative
value was set to zero. An estimate of the galaxy size was
made and any remaining features outside it (e.g. stellar
images) were set to zero as well. Thus at the end of this stage
the only remaining stellar images were superposed on the
galaxy image. ‘
The automatic procedure described above results in some
inaccuracies in the evaluation of the exact sky level to be
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Figure 2. Iterative weighted mean type for RB, HC and GV. The plots show for each galaxy the current iteration mean type versus the original
straight mean type. Root mean square values and Pearson’s r are calculated between the current iteration mean type and the straight mean.

Table 2. Choices of type sets.

Type Set number Based on Expert(s)

1 RB,HC,GV,AD,JH,vdB
RB,HC,GV,AD,JH,vdB

RB,HC,GV

RB

HC

GV

AD

JH

vdB

© 00N TR WN

subtracted. However, in most cases this inaccuracy is small
enough to be insignificant for our purposes. We are not doing
photometry here, but rather considering morphological
features of an entire image, and these are not very sensitive to
the sky threshold we calculate.

4.2 Star removal

For each image a list of star candidates was prepared by
binning all intensities into a few levels and picking up local
maxima. The exact number of bins was dictated by the
overall variability of the image. Of these candidates the ones
which qualified as stars had to have a nearly Gaussian light
profile. Intensities were measured in circular annuli around
the centre of each star candidate. Allowing for the potentially
burnt-out centre meant that Gaussian fitting could not

No. of Galaxies

Remarks

830 straight (unweighted) mean
830 iteratively corrected mean
830 iteratively corrected mean
764

812

473

814

824

549

proceed all the way to the centre of the stellar image, while,
since the star was embedded in patches of the galaxy, it was
difficult to go very far out. Typically this left us with only 3-4
annuli that we could count on, and for this reason we
checked only the radii for which the intensity first dropped
below 80 and 60 per cent of the intensity at the centre of the
star candidate. If the profile is indeed Gaussian, the inten-
sities at these radii are related through

1(rg) "go_"(fo rsfo 1
e - = -—+=], 2
I(7s) xp 20° xp 2rd, 2 @

where I(r) is the intensity at a given radius 7, and rg and 7,
are the radii of 80 and 60 per cent central intensity, respec-
tively. In equation (2) use has been made of the approxima-
tion rg= 0. Since I(rgy)/I(rg) is by definition 0.8/0.6, a
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Gaussian would give rg/rs,=0.65. Since the resolution is
low, both rg, and r, are highly discretized, and in order to
overcome this problem we adopted the condition r30/Fe0 =
0.65 as a criterion for a stellar image. Further criteria were
employed as well. To avoid removing star-like Hn regions,
only very bright star candidates (those whose maximum was
in the top three bins) were considered for removal; also, to
avoid mistaking very bright and nearly Gaussian parts of the
galaxy for stars, a maximum stellar image size was decided,
and no candidate larger than this size was removed.

For each removed star a radius of deletion was set at the
annulus where the average intensity dropped for the last
time, before beginning to rise again. The area to be removed
was set to intensity zero and then the gap was filled one
annulus at a time from the outside in, each new pixel taking
on the average values of its nearest non-zero neighbours.
This worked well automatically for most cases. Nevertheless,
there were 15 cases in which superposed stars were too big

Automated morphological galaxy classification 571

compared to the image of the galaxy to be correctly removed
by the program, and a list of stars for deletion was prepared
by hand for these galaxies. In some other galaxies bright stars
were superposed on very bright patches of the galaxy and
were not identified as stars at all. However, the vast majority
of superposed stars were removed successfully. An example
of one galaxy image before and after sky subtraction and star
removal is shown in the top part of Fig. 3. The processed
image has been slightly smoothed to reduce the effect of
noise in the feature extraction stage.

4.3 Image standardization

The centre of each galaxy was located and translated to the
centre of the pixel map. Second moments were calculated on
the entire image in order to find its ellipticity and position
angle. The ellipticity was defined as 1 — b/a, where b is the
semiminor axis and a the semimajor axis. The position angle

6349002

6349002

S

ggﬁ*

= M@\ B
e

16465004

6469004

Figure 3. Top: f634g002, before (left) and after (right) sky subtraction and star removal. The experts were sent the original images, which
looked like the one on the left. Bottom: f646g004: sky-subtracted and star-removed (left) versus reconstructed from the elliptical annuli (right).
The reconstructed image was enlarged to show its lower resolution. It is also slightly rotated compared to the original image.
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was measured counterclockwise from the positive x-axis of
the picture. The size of the galaxy was also estimated and its
surface brightness worked out as the average pixel intensity
over the entire image.

The amount of information (i.e. the number of pixels)
available varies from image to image, as a function of
diameter and inclination. In order to get a standard number
of picture elements from all galaxies, regardless of size and
inclination, the images were sampled in elliptical annuli.
Since the resolution with which the images were scanned by
the APM machine was roughly 1 pixel arcsec ™!, an image of
diameter 1 arcmin would have a semimajor axis of 30 pixel.
We therefore decided to sample the galaxies on 30 elliptical
annuli, all of which share the position angle and ellipticity
which were derived for the whole image. This ensures
independence of inclination, although obviously there is less
information in the edge-on images. For images whose
diameter is larger than 1arcmin the annuli are spread out
over the entire image, with a constant spacing in the major
axis. The number of sampling points on each annulus starts
at 32 for the innermost and rises through 64, 128 and 256 up
to 512 for the outermost. This constitutes some oversampl-
ing in most annuli.

All subsequent feature extraction is performed on the
sampled annuli. The full image as such is no longer used. In
the bottom half of Fig. 3 we show two images of the same
galaxy - one is the sky-subtracted and star-removed image,
while the other is its reconstruction from the sampled annuli.
The reconstructed image is rotated (since the sampling
begins always on the automatically determined major axis),
and the central few pixels are missing since they were not
sampled. The original image diameter was much larger than
1 arcmin, so we undersampled it considerably with the 30
ellipses. For this reason the reconstructed image has a signifi-
cantly lower resolution than the original image. Nevertheless,
it is undoubtedly the same galaxy, and, as we show below, the
loss of information in such cases does not prevent the ANN
from functioning well.

5 FEATURE EXTRACTION

Throughout this paper our approach to the classification
problem is trying to mimic the human expert. We therefore
needed to extract global as well as detailed parameters,
according to our understanding of what is morphologically
significant. We have developed considerable software for this
task and all the features extracted for the ANN are prepared
in a fully automated manner. In the description that follows
we make repeated references to four representative galaxies,
whose images are shown in Fig. 4. We begin by describing the
parameters and how they were extracted from the images,
and then proceed to analyse their correlations with type.

5.1 Global parameters

The first two global parameters we have are the apparent
ellipticity and the surface brightness of the image, which are
calculated by the reduction program. The other source of
global parameters is the light profile, which is a plot of
average annulus intensity versus annulus number (in the
range 1-30). The light profiles of the selected four galaxies

are shown in Fig. 5. Although the appearance to the eye of
the two edge-on galaxies is quite different from that of the
face-on galaxies, the similarities between the light profiles of
the two early-type galaxies (f643g004 and f646g057) are
clear. The profile of f646g004 is quite unique, as the internal
ring is so prominent that the light profile actually rises
around annuli 7-10.

The general quality of the light profiles is too poor for a
fitting procedure of either an r'/* law or an exponential disc
to be carried out, and so we have no means of determining
the bulge-to-disc ratio, which is a very important indicator of
type (Simien & de Vaucouleurs 1986). We therefore turn to
other parameters derived from the light profile. A concise
way to describe the light profile is to measure concentration
indices (cf. Doi, Fukugita & Okamura 1993). We used the
definition

Der(r) dr

C,=%% "7, 3
¢ (30(r)dr 3)

where r is the radius in normalized units (1-30), I(r) is the
average intensity of the corresponding annulus, and a is a
fraction. We calculated nine such indices for a values of 0.1,
0.2,...,0.9, and added as a tenth parameter the ratio of the
radius enclosing 75 per cent light to the radius enclosing 25
per cent light, as suggested by de Vaucouleurs (1963).

While the concentration indices will correctly convey the
similarity between the two early-type galaxies, they will not
tell us much about the affinity of the two spirals (f646g004
and £635g008). We therefore need other parameters to tell us
that. Although the differences between their light profiles are
considerable, the two spirals do have in common a certain
feature: both of their light profiles drop fast at low annuli,
whereas those of the early-type galaxies are nearly flat in the
first few annuli before beginning to decrease significantly.
This is a reflection of the size of the bulge, which in many
galaxies in our sample is burnt out. Since we cannot measure
the bulge-to-disc ratio directly, the alternative we are left
with is measuring the size (i.e. number of annuli) of the ‘flat’
region in the light profile. The definition we adopted for the
size of the flat region is as follows. We follow the slope of the
light profile and find its steepest value. We then define 25 per
cent of this value to be the threshold, and the radius at which
the slope first exceeds this threshold is taken to be the size of
the bulge. If the light profile starts with a sharp rise, we take
the bulge size to be zero.

Two other parameters may be of importance. One is the
shape of the outer part of the profile, which is much straighter
for the spirals than for the early-type galaxies. A way of
quantifying this observation is to fit straight lines to the
middle and outer third of the profile and look at the ratio of
the slopes. Another parameter of interest, suggested by D.
Lynden-Bell, comes from looking at a plot of » X I(r) versus
r, rather than the original profile [(r) versus r]. This kind of
plot for the four galaxies is shown in Fig. 6. It can be seen
that the peak of this curve occurs at values of 7 that increase
with type, and the two early-type galaxies have almost the
same peak position. Here again the prominent ring of
6462004 plays a part in shifting the peak of its curve to the
left. We take the position of the peak as another parameter.
The total number of global parameters is therefore 15 [ellip-
ticity, surface brightness, 10 concentration indices and
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Figure 4. Images of four galaxies representing early types (left) versus late types (right), and edge-on (bottom) versus face-on (top) inclinations.

‘bulge size’, slope-ratio and the peak position of rxI(r)
versus r].

5.2 Detailed parameters

All detailed parameters should be available from the
sampled annuli, and in Fig. 7 we show the annuli of each of
the four galaxies, with r going up along the positive y-axis.
Detailed parameters are by nature available only for face-on
galaxies, since the amount of information drops sharply as
the inclination increases. The plot for the edge-on early-type
galaxy is completely dominated by its bulge, and it actually
appears to have small-scale structure comparable to that of
the edge-on spiral. Clearly, only the plots of the face-on
galaxies can be trusted to supply us with useful information
for classification.

We therefore defined a quantitative criterion for the
distinction between edge-on and face-on galaxies. Inclination
is not the only factor that plays a part here. Large images can

have high inclinations but still contain much detail, whereas
small images already contain little information at moderately
high inclinations. We therefore decided to look at the semi-
minor axis. If the semiminor axis is too small, many of the
annuli will overlap as they pass near the bulge and we will get
certain features smeared over many annuli, although their
actual sizes are quite small. For this reason our criterion for
‘edge-on image’ is that its semiminor axis is less than 15 pixel
long (i.e. the maximum number of annuli allowed to overlap
on any given pixel is 2).

Splitting our sample in view of this criterion means that we
can try to work out detailed parameters only for less than 70
per cent of the sample. For this part of the sample we found
two promising sources of parameters. First, there is the
parameter used by Schweizer (1976), who investigated six
giant spirals in great detail and defined an arms-to-disc ratio
in the attempt to quantify the ratio of arm-strength to the
underlying disc. Following the definition in Mihalas &
Binney (1981), we looked at each elliptical annulus and took
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as the disc component (I;) the average of the two lowest
intensity minima lying at least 90° away from each other. The
average of the annulus (7,) was then calculated, and the arms-
to-disc ratio was defined as

AD = ) (4)

This ratio was calculated for each annulus separately, and
then we made six combinations of the 30 ratios: their mean
over all annuli, and the means over five groups of successive
annuli (3-7, 8-12,13-17, 18~22 and 23-27).

The other source of detailed parameters is the spiral arms.
Hubble (1926, 1936) used them as one of the major para-
meters in classification, yet gave qualitative rather than
quantitative definitions. Quantifying the arms implies tracing
them in the first instance. We developed a computer code for
doing just that. Our starting point is a projection in polar
coordinates of all annuli (each annulus stretched/shrunk to
128 points in the azimuthal direction). We then define as the
‘local neighbourhood’ of any given pixel the eight pixels
nearest to it (one on either side of it in the same annulus and
the nearest three in either adjacent annulus). Next, we cross
out from this projection all pixels with more than two neigh-
bouring pixels of higher intensity. This gives us a basic trace
of bright patches of arms, but the arms the human eye ‘sees’
look at this stage quite fragmented. In Fig. 8 we show a trace-
map of the arms of the face-on spiral we discussed earlier
(f646g004), as picked up by our software. The arms stand
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out, but clearly some of them are fragmented, and there is
noise. We employ a connecting algorithm to link arm frag-
ments, subject to criteria of distance and orientation. Finally,
we measure the average length of the resulting arms, the
number of arms and their intensity, which is measured as the
average ratio of intensity of pixels belonging to the arm to the
average intensity of their respective annuli. The total number
of detailed parameters we end up with is nine (six arm-to-
disc ratios and three arm parameters). For the edge-on
images we kept all detailed parameters fixed at a value of
zero. Table 3 summarizes our parameters and their defini-
tions.

5.3 Correlations of parameters with types

We checked to see whether there are good correlations of
our various parameters with the Revised Hubble type. In
Figs 9-12 we show plots of some parameters versus the
corrected mean type. Figs 9 and 10 describe global para-
meters for all galaxies. Figs 11 and 12 describe detailed para-
meters for face-on galaxies only. The distribution of values is
significantly different from Gaussian for many types, and so
for each type we calculated the median value and drew a
vertical bar from the value representing 32 per cent to the
value representing 68 per cent of the galaxies in that type.
The parameters chosen appear to be correlated with type,
but there is considerable scatter and many of the correlations
are non-linear. This is an indication that our choice of para-
meters requires a non-linear automated classifier,
such as an ANN.
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Figure 7. All annuli of the four selected galaxies, artificially shifted so that the innermost annulus is at the bottom of each plot.
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Table 3. Definitions of morphological parameters for the ANN.

Number Parameter Name

1 Ellipticity

2 Surface Brightness
3 Bulge Size

4 Slope Ratio
5 Peak rl

6 C10

7 C20

8 C30

9 C40
10 C50

11 C60

12 Cc70

13 C80

14 C90

15 Crs /25

16 ADgy

17 ADj3_7

18 ADg_12

19 ADj3-17
20 ADjg-22
21 AD23.27

22 Arm Number
23 Arm Length
24 Arm Intensity

Definition
1 — b/a, as measured by the reduction program
average pixel intensity over the whole image
radius at which light profile slope first exceeds threshold
ratio of slopes of straight lines fitted to the middle and outer 1/3 of the light profile
radius where peak of rI(r) vs. r occurs
concentration index, a = 0.1 (see eq. 3)
concentration index, a = 0.2
concentration index, o = 0.3
concentration index, a = 0.4
concentration index, a = 0.5
concentration index, a = 0.6
concentration index, a = 0.7
concentration index, o = 0.8
concentration index, o = 0.9
ratio of radius enclosing 75% of total intensity to radius enclosing 25% of it
arms—-to—disk ratio, averaged over all annuli
arms—to—disk ratio, averaged over annuli 3 — 7
arms—to—disk ratio, averaged over annuli 8 — 12
arms—to—disk ratio, averaged over annuli 13 -~ 17
arms-to—disk ratio, averaged over annuli 18 — 22
arms—to—disk ratio, averaged over annuli 23 — 27
number of arm segments found by the arm-seeking algorithm
average length of arm segments
average relative intensity of arm segments

Of course, not every parameter we use needs to be well
correlated with type. For example, high ellipticity can tell us
that a certain image is not that of an elliptical galaxy, and yet
there is no clear correlation between ellipticity and type in
general. There are some curiosities too. The ‘bulge size’
seems to go down rather than up as we go to types earlier

than type 0 (SO/a). This may be due to some artefact in our
sample, or it maybe reflects the difference between our
definition of ‘bulge size’ and the accepted definition which
relies on the fit to r'/# profiles. Type 10 (Im) galaxies do not-
fit very well with the trends set up by other types, for most
parameters. This may be due to the very small number of
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type 10 galaxies in our sample and to the fact that some of
them are severely overexposed. There is noise too in the arm
parameters, especially in the average arm-length parameter,
but the overall correlation is good enough for us to include it.
In the arm parameters we have non-zero values for the early-
type galaxies, which are the result of noise and superposed
stars (which were not removed by the reduction program)
being interpreted by the software as arm fragments. There
are, of course, internal correlations between our parameters,
and these were dealt with as discussed below.

6 THE ANN CLASSIFICATION PROCEDURE
6.1 Combining parameters to form input parameter sets

The feature extraction stage produced 24 parameters, which
we defined as our ‘parameter set I'. However, we had good
reasons to expect equally good results if we use less para-
meters. There are obvious correlations among the para-
meters we chose. Clearly, we do not need all 10
concentration indices or all six arms-to-disc ratios. In
addition, the ANN performance could be degraded if we use
too many inputs, as this means the number of free para-
meters (‘weights’) it is using is very large. This increases the
chance of the ANN settling into a local (rather than the
global) minimum (the considerations for constructing the
ANN will be elaborated upon below).

In order to examine possible correlations in the data, we
used principal component analysis (PCA). This is a linear
technique whereby a parameter space of some dimensional-
ity is rotated to its principal axes, defined as the orthogonal
axes along which the variances are maximal. It is usually
possible to represent a high percentage of the variance in the
data by a number of principal components that is much
smaller than the original dimensionality of the data (see

Lahav et al. 1995, in preparation, for more details). We -

employed this technique separately on each of the four
‘families’ of input parameters, namely the light-profile
parameters (bulge size, slope ratio and peak rI), the concen-
tration indices, the AD ratios and the spiral-arm parameters.
For the purpose of the PCA, each parameter was normalized
to have zero mean and unit variance, so as to avoid one
large-valued parameter overwhelming the rest and biasing
the intercorrelations between the parameters. As a result of
this analysis we chose the following combinations of para-
meters to make up our compressed ‘parameter set II': two
linear combinations of the three light-profile parameters
(covering 93 per cent of the variance); three combinations of
the 10 concentration indices (98 per cent variance); three
combinations of the AD ratios (93 per cent variance) and all
three arm parameters. We added the ellipticity and the
surface brightness without change, so ‘parameter set II
contains 13 parameters.

In view of the possible application of our methods to small
images of distant galaxies, we wanted to know the effect of

Automated morphological galaxy classification 579

removing the detailed parameters and leaving only those
parameters which can be measured for small, distant images.
We therefore defined a set of parameters which included
only the global parameters: ‘parameter set III’ includes the
ellipticity, the surface brightness, the two PCA-compressed
light-profile parameters, and the three PCA-compressed
concentration indices - seven parameters in all. Table 4
sumimarizes our various parameter sets.

All the parameters in all of the sets were then rescaled so
as to fit into the range [0, 1] by the transformation

] — Y/

K= 5287028 (5

where the superscript j denotes which parameter is being
rescaled; the ‘new’ and ‘orig’ subscripts refer to the rescaled
and original values of that parameter, respectively; and the
‘min’ and ‘max’ subscripts refer to the minimal and maximal
values (respectively) of that parameter over the entire
sample.

6.2 ANN configurations

6.2.1 Designing the ANN architecture

The architecture of the ANN is the full description of the
way different nodes in the ANN are connected to each other.
The number of nodes in the input layer is dictated by the
number of parameters in the chosen training set. There was a
single output node in all runs. We used sigmoids for the
transfer functions from one layer to the next, defined as
follows:

1
_1+exp(—w-x)

flx, w) , (6)

where x is the vector of data entering the current layer, and
w is the weights vector. The range of the sigmoid function is
[0, 1], so the types were transformed from their original
values (we used only types in the range [ — 5, 10]) to the range
[0, 1]in a linear manner.

The number of hidden-layer nodes is not specified from
the outset and is changed to get the best overall results. For
most runs we used parameter set II, which had 13 inputs, so
we decided to try one architecture with 13 hidden nodes and
one with five, in order to see if such a significant difference in
the number of weights would change the results.

The ANN is a minimization scheme in the multidimen-
sional space of the weights (the free parameters of the ANN).
The value it minimizes is the rms difference between the
desired output (e.g. an expert type) and the actual ANN
output:

E =%z<D"—of>2, (7)

i

Table 4. Parameter sets for training the ANN.

Set Number No. of Parameters

I 24
II 13
II1 7

Contents
A full set including all parameters
PCA-compressed version of set 1

Global parameters only, PCA-compressed
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where D' is the desired output for galaxy i, and O’ is the
actual ANN type for that galaxy. The summation is over all
galaxies in the training set. There is an interplay between the
degree of complexity, allowing a more refined classification
as the number of weights increases, and the existence of local
minima in the error. Thus the chance of the ANN getting
stuck in them increases with the number of weights. For this
reason we use a regularization term (‘weight decay’). This
term is included by changing the error we are minimizing to

&€
Etot=E+EZ wjz‘a (8)
)

where E is defined in (7), and the summation is over all
weights in the ANN. We fixed the value for ¢ by following the
recipe given in Lahav et al. (1995, in preparation), which is
based on Mackay (1992). We found optimal values of
£=0.003 for ANNs with five hidden nodes, and ¢ =0.01 for
ANNs with 13 hidden nodes, from a set of ‘design’ runs.
These were carried out over a grid of ¢ values in the range
[0.0, 1.0], for each of the two architectures we used and using
parameter set II with the corrected mean types of all six
experts. The optimal values we found for ¢ also gave the

‘smallest rms difference between the ANN and the desired

outputs.

6.2.2  The classification runs

On top of the various type sets we chose for each of the
architectures, the process of training the ANN requires splitt-
ing the parameter set in two to form a training set and a test
set. Each of these sets contains, for every galaxy, the values of
all the input parameters and the desired value(s) of the
output(s). The ANN ‘learns’ from the training set, trying to
get as close as possible to the desired output(s) for each
galaxy. When the training phase is over, we can use the
resulting weights to classify data, by presenting an input
vector to the ANN and observing the output. ANNs with a
single (so-called ‘analogue’) output produce a continuum of
output values, which simply give us a predicted 7-value for
each galaxy. On the other hand, one may use a multiple-
output architecture which allows one to get classifications in
terms of Bayesian a posteriori probabilities of belonging to
any given type (see Lahav et al. 1995, in preparation).
However, galaxies form a sequence and we wanted to avoid
binning them artificially into a certain number of classes. For
the purposes of this paper we decided not to make use of
multiple output ANNS at all.

In planning the various configurations of the ANN we had
to solve several problems.

(i) We had a relatively small number of galaxies. Our
sample contained 830 galaxies, which seems to be quite a
large number. However, there were 16 different types, so
some types were not well-represented. Moreover, we had to
split our sample into a training set and a test set. Due to this
severe shortage of training patterns we split the data
randomly in four and made four pairs of training-test sets,
each time picking a different combination of three quarters

to make up the training set and the remaining quarter as the

test set. As a result we had to run each ANN four times for

each configuration just to get a full classification of all
galaxies.

(ii) We had 11 different sets of desired outputs (type sets),
as explained above. For each of the sets 4-9 there was only
one source of types (the classifications of the chosen expert).
However, sets 1-3 were made from means of several experts,
and we felt we were losing information by training the ANN
on the mean type only. We approached the problem by
enlarging our training set artificially, including in it each
galaxy not once but rather as many times as the number of
classifications it received by different experts. All of its
appearance in the enlarged set had exactly the same input
values, and the only difference between various entries of the
same galaxy was the desired type, supplied by a different
expert each time. Thus we included all the information
supplied by the experts and also gave more appearances to
galaxies which more experts classified. In the test set, how-
ever, each galaxy had to have a single appearance, with one
type (the ‘true answer’). We enlarged our training sets this
way when constructing them in conjunction with types sets 1,
2 and 3. In Table 6, which summarizes the results of various
runs, the ‘training set size’ column is the approximate number
of patterns in a typical training set. This number is not
unique, as we composed the training sets for each run from
three quarters which were only approximately of the same
size and so the numbers of patterns quoted in the table is just
an average. A possible outcome of the fact that some galaxies
appear more often than others is a change in the frequency of
types in the enlarged training set, as compared with the
original set. We found that this effect is marginal in our
sample. The runs using the enlarged training sets are num-
bered 3, 4, 7, 8 and 23-26 in Table 6. As a consistency check
we also made runs with a training set that was not enlarged,
using type set 2. These were numbered 5 and 6.

(iii) The ANN starts running from a random set of
weights. Even with the regularization of the weight decay
term, it is conceivable that some initial weights will lead the
ANN to minimum values of the error that are not quite the
global minimum it seeks. To get a reliable answer one has to
run the same ANN several times, each time initializing the
weights at a different set of values, and compare the results.
We used 10 different randomizations for each of the four
combinations of quarters, and so each result we quote for a
given configuration is the outcome of 40 runs of that con-
figuration. We used the same 10 randomization seeds for all
configurations in order to have a uniform basis for compar-
ing different runs.

(iv) We needed a criterion for stopping the training
process. The error on the training set declines monotonically
due to the ANN achieving better and better fits to the train-
ing patterns. The error on the test set, on the other hand, is
the indicator of the ANN’s ability to correctly classify data it
has not been trained on, i.e. to be a good classifier for the vast
number of galaxies which were not classified by human
experts. For this reason we ran the ANN in all configurations
for 300 iterations, and the set of weights giving the minimal
error over the test set was kept and later used for classifying.

The list of configurations we ran appears in Table 5. The
architecture is specified as N, Nyig: Noy» Where N, is the
number of inputs, N, is the number of hidden nodes, and

N, is the number of outputs. In two particular configura-
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tions we used no hidden units at all (denoted by a value of 0
for Nyq). The code used was a quasi-Newton (see, e.g,, Press
et al. 1993) ANN package written by B. D. Ripley of Oxford
University, with some adaptations. In the case of no hidden
units the ANN had either purely linear or purely sigmoidal
connections. Typically, each run took between 1 and 10 CPU
minutes to converge on a SUN Sparc 10 workstation. Once
the ANN finished training, the actual classification of fresh
data took about 1 CPU second for the whole sample.
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6.3 Results
6.3.1 General results and rms dispersions

In order to compare the results of the ANN with the results
we found for the human experts in Paper I, we use here the
same measure of classification success that we used there,
namely the rms dispersion, taken in this paper between ANN
output and the desired output (the type of the galaxy as
dictated from outside). Table 6 summarizes the results for all

the configurations we tried. It specifies for each configuration
the rms dispersion between the ANN and the relevant type
set, and the average over all galaxies of the rms dispersion
between different runs of the ANN (the ‘internal scatter’ of

Table 5. ANN configurations. the ANN). The rms dispersion is defined as

ANN Architecture Parameter Set Types Set

24:5:1 I 2 o o i

24:13:1 I 2 =N— {? ~Tan)’ )
13:0:1 I 2

13:5:1 II 1,2,3,4,5,6,7,8,9 . .

13:13:1 I 1,2,3,4,5,6,7,8,9 where T is the relevant expert type, in the range [— 5, 10],
7:3:1 I 2 and T, , is the ANN type, which is expanded from the range
7:7:1 11 2 [0, 1]to the range [ — 5, 10] using a linear transformation. The

Table 6. Resuls of runs as measured by the rms dispersion between the ANN type (averaged over 10
runs) and the expert types. CMT stands for corrected mean type, and SMT for straight mean type. In
runs 3, 4, 7, 8, 23, 24, 25 and 26 use has been made of the enlarged training sets, as described in the
text. Parameter sets are as in Table 4.

Run ANN Parameter Types RMS Internal Training
Number Architecture Set Set Dispersion Scatter Set Size
1 13:0:1 Lin. II 2 (CMT of all experts) 2.04 0.07 620
2 13:0: 1 Sig. II 2 (CMT of all experts) 2.00 0.06 620
3 13:5:1 11 2 (CMT of all experts) 1.83 0.35 3200
4 13:13:1 II 2 (CMT of all experts) 1.84 0.28 3200
5 13:5:1 I 2 (CMT of all experts) 1.85 0.25 620
6 13:13:1 I 2 (CMT of all experts) 1.90 0.11 620
7 13:5:1 II 1 (SMT of all experts) 1.79 0.35 3200
8 13:13:1 II 1 (SMT of all experts) 1.81 0.28 3200
9 13:5:1 II 3 (CMT of RB,HC,GV) 1.92 0.28 620
10 13:13:1 II 3 (CMT of RB,HC,GV) 1.94 0.22 620
11 13:5:1 II 4 (RB) 1.94 0.23 570
12 13:13:1 il 4 (RB) 1.96 0.12 570
13 13:5:1 II 5 (HC) 1.96 0.27 610
14 13:13:1 1I 5 (HC) 2.00 0.13 610
15 13:5:1 11 6 (GV) 2.24 0.33 350
16 13:13:1 II 6 (GV) 2.30 0.12 350
17 13:5:1 II 7 (AD) 1.89 0.27 610
18 13:13:1 II 7 (AD) 1.95 0.11 610
19 13:5:1 11 8 (JH) 2.31 0.32 620
20 13:13:1 II 8 (JH) 2.34 017 620
21 13:5:1 1 9 (vdB) 2.18 0.31 410
22 13:13:1 II 9 (vdB) 2.25 0.13 410
23 7:3:1 III 2 (CMT of all experts) 2.22 0.45 3200
24 7:7:1 III 2 (CMT of all experts) 2.15 0.40 3200
25 24:5:1 I 2 (CMT of all experts) 1.78 0.39 3200
26 24:13:1 I 2 (CMT of all experts) 1.81 0.28 3200
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summation is over all galaxies, and the superscript i denotes
a particular galaxy.
The following comments can be made about this table.

(i) For the purely linear ANN with no hidden units (run 1)
one may write down an analytical solution (Lahav et al.
1995, in preparation). Although the ANN in this case is
much simpler and faster to converge, it does significantly
worse than its non-linear counterparts. This supports the
view that our classification problem is not linear, and that the
use of classifiers such as ANNs is well justified. The use of a
hidden layer contributes a lot, as can be seen from the fact
that a non-linear ANN, when run without hidden nodes (run
2), gives poorer results than those configurations with hidden
nodes.

(ii) While it is obviously important to include hidden
nodes in the ANN architecture, their exact number has little
effect on the results. This is so, because we adapt the weight
decay coefficient ¢ to the architecture. This means we can
save a lot of computer time by choosing a relatively small
number of hidden units (say, a third of the number of inputs)
when constructing the ANN.

(ili) The ANN fits the mean of all experts (either straight
or corrected mean) better than it does any of the experts
taken separately, at least when its configuration includes
some hidden nodes. It could be that in calculating the mean
type the personal tendencies of each expert are counteracted
by the other experts to form a more balanced set of classifi-
cations. It is important to remember that it is the ability of
the ANN to replicate classifications by a human expert that
is measured here, not the reverse. A larger rms dispersion
between the ANN and an expert means that given the para-
meters, the ANN was less successful in learning that expert’s
classification scheme.

(iv) Comparing to Paper I, where we found the overall
rms dispersion of the experts to be about 1.8 types, the ANN
achieves a comparable rms dispersion, at least when
measured against the mean types of all experts (runs 3-8).
The runs utilizing the enlarged training sets (runs 3, 4, 7 and
8) gave slightly better results than those that used the original
training set, but the difference is too small to be considered
significant.

(v) The agreement of the ANN with the averaged classifi-
cations of RB, HC and GV (runs 9 and 10) is slightly worse
than the agreement with the corrected means of all six
experts, but better than the results for the sets utilizing
classifications of any one of them separately (runs 11-16).
This may again reflect the ‘mitigating’ influence of taking the
mean type of several experts. Note also that these three
experts had the tightest correlations between their classifica-
tions (see Paper I).

(vi) Use of all 24 parameters (runs 25 and 26) has no
advantage over using the PCA-compressed set of 13 para-
meters, in terms of successful classifications. On the other
hand, use of all 24 parameters forces us to utilize more
weights in the ANN architecture which only results in much
longer computer runs, so our natural choice is to concentrate
on the set of 13 parameters.

6.3.2 Interpreting the ANN classifications

Analysis of the ANN classifications in terms of a single
number (the rms dispersion) does not tell the whole story.

For a more detailed study of the way the ANN worked, we
looked closely at run 3 (13:5:1 architecture, corrected mean
types). In Fig. 13 we show four plots. The bottom-left plot
shows the frequency of corrected mean types in our sample
of galaxies. The bottom-right plot shows the frequency of
types given by the ANN in our sample. It is clear that the
ANN avoided both ends of the scale, smoothed the overall
distribution and was most inclined to classify galaxies into
type 4, which is the most frequent in the sample. The top-left
plot describes the rms dispersion between the ANN and the
corrected mean type for each type separately. It is clear that
the minimum of the rms plot corresponds to the most
frequent types (3-5) in the sample. The erratic behaviour of
this plot at the early-type end is due to the fact that most of
these galaxies were assigned either type — 5 or type —2 by
the experts, and the resulting mean type was somewhere
between these two extremes. This meant that for these types
the ANN had to force its output to be what no input pattern
actually demanded it to be. The ANN could not always quite
do this transition, and while for some cases its designated
class matched the mean well, in others it did not do so well.
The top-right plot shows how the rms dispersion between
the ANN and the experts changes with ANN type. This can
be taken to be the measure of reliability of the ANN classifi-
cations, and it is rather constant, with both ends of the scale
artificially dropping to zero, since the ANN did not classify
any galaxy as either types — 5, 9 or 10. What the plots in Fig.
13 show clearly is that the ANN is inclined to take ‘safe bets’
- in general, the more patterns of a given type it sees, the
more likely it is to choose that type when in doubt. To
examine further the ANN performance, we show in the left
panel of Fig. 14 a scatter plot of ANN type versus corrected
mean type for all galaxies in our sample. The error bars
indicate the standard deviation of the classification of each
galaxy by the ANN over 10 runs (the internal scatter of the
ANN). The diagonal lines are equal-error lines. The tight
correlation around types 3-5 was expected from the
previous figure, but in this figure, we also see what happens
at the early and late ends. Whereas the ANN classification
still roughly follows — on average — the mean expert type for
early mean types, it fails almost completely in classifying the
very late-type galaxies (7> 7). In the right-hand part of Fig.
14 we show a histogram of the rms dispersion between the
ANN types and the corrected mean types, as a function of
internal scatter in the ANN classifications. There is a corre-
lation between these two quantities, although it is rather
noisy. This can mean that like a human expert the ANN
tends to make mistakes when it is less sure what type to
attach to a certain galaxy. It is worth mentioning that while a
human expert can exercise the right not to classify a certain
galaxy, the ANN has no such freedom and is forced to
classify all galaxies.

Another interesting question is whether there is any limit-
ing ‘hard-core’ error value below which the ANN cannot go.
To answer this, we plotted in Fig. 15 the cumulative percent-
age of galaxies for which the error in classification is not
more than a given value, against the error. The curve is very
smooth and shows clearly that there are errors of all values.
The curve is concave, so that as the error increases the
marginal growth in the number of galaxies decreases. Indeed,
54 per cent of all galaxies have errors of up to one type, and
80 per cent have errors of up to two types. These values are
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comparable to the values we calculated for the human
experts in Paper L.

6.3.3 Dependence on image diameter and inclination

Fig. 16 shows the dependence of the rms dispersion between
the ANN type and the corrected mean type on image
diameter and axial ratio. There is a trend towards smaller

rms dispersion as the size of the image increases, but it is very
weak and noisy. This seems to indicate that our sampling
technique gives us a comparable quality of features from all
image sizes in the sample. On the other hand, the axial ratio
dependence seems to suggest that the ANN is doing much
better on edge-on images, which is rather surprising. This,
however, can be explained by the fact that most edge-on
images are of types 3-5, where in general the classification
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errors are low, while many face-on images belong to early-
type galaxies, for which we have a higher rms dispersion. At
any rate, the trend one would expect - that of rms dispersion
increasing with image inclination - is not there. Again,
this means that our sampling is good in that it extracts
reliable features from all images, regardless of their apparent
ellipticity.

6.3.4 Analysis of severe misclassifications

We looked at a subset of the sample for which the ANN
missed the corrected mean type by at least three types

(roughly a 2 ¢ error). There were 74 such galaxies (9 per cent
of the sample), and in the top part of Fig. 17 we show their
distribution versus corrected mean type. While the absolute
number of misclassifications is relatively stable across all
types (with some increase towards both ends), the fraction of
misclassifications is evidently much higher towards both
ends of the scale, especially for very late types where it
shoots up for types 9 and 10. The problem of classifying at
both ends of the scale may be due to our choice of para-
meters (failing to describe those types of galaxies properly),
or to small-number statistics (see Fig. 13 for class frequen-
cies). We think it is due to both, and in order to check this we
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again show, in Figs 18-21, the distributions of several para-
meters we used versus corrected mean type, but this time we
add each of the 74 badly misclassified galaxies as single
points on these plots. The bulge sizes for most of these
galaxies are far outside the range of values typical for their
respective types, and there are also large discrepancies in the

slopes ratios and peak rl. These problems emerge again in -

the light concentration indices, where many of these galaxies
are out of the scale of any type whatsoever. This means that
globally something is wrong with these images — e.g. their
sizes were overestimated, leading to a wrong light profile that
includes a lot of sky instead of only the galaxy, or they were
overexposed, leading to exceedingly large bulges. It is diffi-
cult to draw conclusions from the detailed parameter plots
(Figs 20 and 21), since some of these galaxies were edge-on
and consequently their detailed parameters were set to zero
to begin with. Nevertheless, it seems that some early-type
galaxies had ‘arms’ (apparently noise in the image), while the
very late-type galaxies were underestimated for arms and
arm-to-disc ratios. We can try to settle the question of which
type of parameters was responsible for these misclassifica-
tions by plotting the fraction of misclassified galaxies against
their apparent ellipticity. Since the detailed parameters were
unavailable for edge-on images, this kind of plot should tell
us whether their absence made the edge-on images more
susceptible to large errors in classification. In Fig. 22 we
show two superposed histograms:the solid line denotes
frequencies of axial ratios in the entire sample (expressed as
a percentage of the total sample), while the dashed line

denotes the badly misclassified galaxies (as a percentage of
these 74 galaxies). The two plots are very similar, and this is
taken to imply that the lack of detailed parameters did not
cause more misclassifications — on the contrary, for very low
axial ratios (0.2 and less) there are less badly misclassified
galaxies than there are such galaxies in the whole sample.

This leaves us with the global parameters as the major
culprits. We have looked at the images of these 74 galaxies
one by one and tried to identify the problems. For about 30
of them there was not one obvious source for the large error.
However, for the others we found that 23 were overexposed,
which led to overestimation of bulge sizes and influenced the
entire light profile; in 10 early-type images the sky was not
cut at the correct threshold, leading to an underestimation of
the bulge and causing spurious structure in the external
regions to be regarded as arms; there were three interacting
pairs and six or seven peculiarly shaped galaxies, which our
standard parameters were not designed to describe; and
there was one case where the image quality was very poor
and the resulting parameters were degraded. The implication
is that when applying this kind of classifier to new data one
has to take care and monitor the images by eye as a safety
check, or alternatively devise some automated means for
detecting the problems we encountered.

6.3.5 Analysis of the best classifications

We have defined the ‘best classified galaxies’ as the collection
of all galaxies whose ANN type differs by less than 0.5 types
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Figure 19. Light concentration indices: badly misclassified galaxies (crosses) and the dispersion of parameter values in the whole sample,
versus corrected mean type (circles).
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corrected mean type (circles).
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corrected mean type (circles).
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Figure 22. Distribution of axial ratios in the whole sample (solid
line) and in the subset of badly misclassified galaxies (dashed line).

from the expert type. 231 galaxies (28 per cent of the sample)
met this criterion, and the lower half of Fig. 17 shows their
distribution with type. This distribution closely follows the
distribution of types in the entire sample and, as expected,
the most frequent types in the sample are those most repre-
sented in the ‘best classified’ subset. Note that no galaxies of
types — 5, 9 and 10 belong to this subset.

7 DISCUSSION

We describe an automated process starting with the digitized
images of galaxies and ending with their morphological
classification. The sample was selected from the APM
Equatorial Catalogue (Section 2), but the techniques
described in this paper can be easily applied to other sources
of galaxy images. Classifications for this sample were pro-
vided through collaborative efforts with six experts (Section
3), and can be used to classify automatically many other
galaxies. The data reduction (Section 4) and feature extrac-
tion (Section 5) were done by our software. The ANN was
trained on various sets of types and performed very well. The
rms dispersion between the ANN types and the corrected
mean type is comparable to the overall rms dispersion
between pairs of experts (as found in Paper I). Analysis of the

way the ANN classifies (Section 6) showed that it is more or

less reliable to the same degree for most types, but does not
classify any galaxy into types —5, 9 or 10. Its error com-
pared to the mean expert type is smallest for the type range
3-5, which is the most frequent in the sample. These can be
taken as measures of the ANN reliability in future classifica-
tions of many more images, predominantly of as yet unclassi-
fied galaxies. Another extension of this work can be the
application of unsupervised methods to these data sets,
which could result in a different, new classification scheme
altogether.
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APPENDIX A: CLASSIFICATION OF 86
GALAXIES

Table Al lists 86 galaxies from our sample, giving their
identification in the sample, their RA and Dec. coordinates,
the classifications they were given, and all the parameters
used by the ANNSs. The classification fields give the expert
type (T.,) and the standard deviation among the expert
classifications (S,,,) for each galaxy, as well as the ANN
mean type (7T,,,) and its standard deviation over 10 runs

(Sann)- The parameters used by the ANNs follow in this
order: ellipticity (Ell), surface brightness (SB), bulge size
(Bulge), slope ratio (Slopes), Peak 7/ (1I), the 10 concentra-
tion indices (C10, C20, ..., C90, C;5),5), the six arms-to-disc
ratios (AD,,, AD;_,, ..., AD,;_,,), and the arm parameters:
number of arms (# Arms), average arm length (Leng.), and
average arm intensity (Intens.). All quoted parameters values
are as received from the feature extraction software, without
normalization.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995MNRAS.275..567N&amp;db_key=AST

